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Abstract

The sinusoidal shear deformation plate theory, presented in the first part of this paper, is used to study the buckling
and free vibration of the simply supported functionally graded sandwich plate. Effects of rotatory inertia are consid-
ered. The critical buckling load and the vibration natural frequency are investigated. Some available results for sand-
wich plates non-symmetric about the mid-plane can be retrieved from the present analysis. The influences of the
transverse shear deformation, plate aspect ratio, side-to-thickness ratio and volume fraction distributions are studied.
In addition, the effect of the core thickness, relative to the total thickness of the plate, on the critical buckling load and
the eigenfrequencies is investigated.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In Part 1 of this paper (Zenkour, 2005a) a sinusoidal shear deformation theory of functionally graded
sandwich plates was presented. Starting with this theory and other theories, the state of deflection and stres-
ses of sandwich plates was analyzed. In this part the free vibration and buckling problems of such plates are
studied.

Here we present a sandwich plate; its faces are typically made from a mixture of ceramic and metal
materials with a desired variation of the volume fractions of the two materials in between the two
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surfaces of each face. The core material of the present sandwich plate is fully ceramic. The composition
of the bottom face is varied from a metal-rich surface to a ceramic-rich surface while that of the top
face is varied from a ceramic-rich surface to a metal-rich surface. The ceramic constituent of the mate-
rial provides the high-temperature resistance due to its low thermal conductivity (Hasselman and
Youngblood, 1978). The gradual change of material properties can be tailored to different applications
and high temperature working environments (Hasselman and Youngblood, 1978; Yamanouchi et al.,
1990; Fukui and Yamanaka, 1992; Koizumi, 1993). This makes functionally graded materials (FGMs)
preferable in many applications. A listing of different applications can be found in the literature (FGM
Forum, 1991).

Several studies have been performed to analyze the behaviour of FG structures (Praveen and Reddy,
1998; Reddy and Chin, 1998; Reddy, 2000; Cheng and Batra, 2000a,b; Vel and Batra, 2002). The response
of FG ceramic–metal plates has been investigated by Praveen and Reddy (1998) using a plate finite element
that accounts for the transverse shear strains, rotatory inertia and moderately large rotations in von
Kármán sense. Reddy and Chin (1998) have studied the dynamic thermoelastic response of FG cylinders
and plates. Reddy (2000) has presented solutions for FG rectangular plates based on his third-order shear
deformation plate theory. Cheng and Batra (2000a) have related the deflections of a simply supported FG
polygonal plate given by the first-order shear deformation theory and a third-order shear deformation the-
ory to that of an equivalent homogeneous Kirchhoff plate. Cheng and Batra (2000b) have used the method
of asymptotic expansion to study the 3D thermoelastic deformations of FG elliptic plates. Recently, Vel
and Batra (2002) have presented an exact 3D solution for the thermoelastic deformation of FG simply
supported plates of finite dimensions.

Among numerous studies on FGMs, an interesting issue is the correspondence between the buckling
load and vibration frequencies of plates and shells. However, the analysis of buckling and vibration of
FGM structures are rare in the literature. Birman (1995) studied the buckling problem of FG composite
rectangular plate subjected to the uniaxial compression. Loy et al. (1999) have studied the vibration of
FG cylindrical shells using Love�s shell theory. Cheng and Batra (2000c) have also presented results for
the buckling and steady state vibrations of a simply supported FG polygonal plate based on Reddy�s plate
theory (Reddy, 2000). The stabilization of FG cylindrical shells under axial harmonic loading is investi-
gated by Ng et al. (2001). Javaheri and Eslami (2002a,b,c) presented thermal and mechanical buckling
of rectangular FGM plates based on the first- and higher-order plate theories. The thermal buckling load
of, and the buckling analysis of radially loaded solid, circular FGM plates are given by Najafizadeh and
Eslami (2002a,b).

From a technical point of view, results of critical buckling load and vibration frequencies enable one to
bypass more complicated calculations for plate theories. Such correspondences have been established be-
tween frequencies of single-layer homogeneous, sandwich, and laminated plates analyzed by using differ-
ent plate theories. However, these results are valid only for plates that are materially and geometrically
symmetric or non-symmetric about the mid-plane. Here we present FG sandwich plate with material
properties symmetric about the mid-plane (see Fig. 1). The faces of the plate consist of a FGM with prop-
erties varying only in the thickness direction. Such faces can be made by mixing two different material
phases, for example, a metal and a ceramic. The core material may be homogeneous and can be made
by one of these materials, for example, a ceramic. Eigenfrequencies and critical buckling loads of FG
sandwich plates are presented using the sinusoidal shear deformation theory (Zenkour, 2004a,b,c,
2005b). It is clear from now that the results of the ceramic plates are much higher than those of the metal-
lic plates. The results of the graded plates are intermediate to those of the ceramic and metal plates. Thus,
the gradients in material properties play an important role in determining the critical buckling loads and
the free vibration frequencies of the FGM sandwich plates. Results for the classical, first- and third-order
plate theories can also be obtained from the present analysis. Comparisons with the existing literature are
made.



Fig. 1. Geometry of the FGM sandwich rectangular plate.
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2. Governing equations

Let the upper surface of the plate (x3 = h/2) be subjected to a transverse distributed load q(x,y). There be
distributed compressive in-plane forces P11 and P22, and a distributed shear force P12 (per unit length) act-
ing on the mid-plane of the plate (see Fig. 1). The dynamic version of the principle of virtual displacements
in the present case yields
Z h=2

�h=2

Z
X

qðnÞ€vidvi þ rðnÞ
11 de11 þ rðnÞ

22 de22 þ � � �
h i

dXdx3 �
Z

X
qdu3 þ P abu3;bdu3;a
� �

dX ¼ 0; ð1Þ
or
 Z
X

Z h=2

�h=2
qðnÞ€vidvi dx3 þ N abdeab þMabdjab þ Sabdgab þ Qa3dea3 � qdu3 � P abu3;bdu3;a

" #
dX ¼ 0; ð2Þ
where q(n) is the material density of the nth layer; Nab and Mab are the basic components of stress resultants
and stress couples; Sab are additional stress couples associated with the transverse shear effects; and Qa3 are
transverse shear stress resultants.

The governing equations of motion can be derived from Eq. (2) by integrating the displacement gradi-
ents in eij by parts and setting the coefficients dui and dua to zero separately. Thus one can obtain
N ab;b � I11€ua þ I12€u3;a � I13€ua ¼ 0;

Mab;ab � I11€u3 � I12€ua;a þ I22€u3;aa � I23€ua;a � ðP abu3;bÞ;a þ q ¼ 0;

Sab;b � Qa3 � I13€ua þ I23€u3;a � I33€ua ¼ 0; ð3Þ
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where
½I � ¼
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I12 I22 I23

I13 I23 I33

2
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3
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X3

n¼1

Z hn

hn�1

qðnÞ
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x3 x23 x3W

W x3W W2

2
64

3
75dx3. ð4Þ
With the help of stress resultants, Eq. (3) gives the following equations for all theories.

SSDPT and TSDPT:
A11u1;11 þ
1

2
B11u1;22 þ A11 � 1

2
B11

� �
u2;12 � A12r2u3;1 þ A13u1;11 þ

1

2
B13u1;22

þ A13 � 1

2
B13

� �
u2;12 � I11€u1 þ I12€u3;1 � I13€u1 ¼ 0;

ð1 $ 2Þ; ð5aÞ

A12ðr2u1;1 þr2u2;2Þ � A22r4u3 þ A23ðr2u1;1 þr2u2;2Þ þ q� I11€u3 � I12ð€u1;1 þ €u2;2Þ
þ I22r2€u3 � I23ð€u1;1 þ €u2;2Þ � ðP 11u3;1 þ P 12u3;2Þ;1 � ðP 12u3;1 þ P 22u3;2Þ;2 ¼ 0; ð5bÞ

A13u1;11 þ
1

2
B13u1;22 þ A13 � 1

2
B13

� �
u2;12 � A23r2u3;1 þ A33u1;11 þ

1

2
B33u1;22

þ A33 � 1

2
B33

� �
u2;12 � Cu1 � I13€u1 þ I23€u3;1 � I33€u1 ¼ 0;

ð1 $ 2Þ; ð5cÞ
where the sign (1 M 2) indicates that from Eqs. (5a) and (5c) other equations may be obtained by inter-
changing the sub-index 1 by 2 and vice-versa and $2( ) = ( ),11 + ( ),22 is Laplace operator.

FSDPT:
A11ðu1;1 þ u2;2Þ;1 þ
1

2
B11ðu1;2 � u2;1Þ;2 þ A12ðu1;1 þ u2;2 �r2u3Þ;1 þ

1

2
B12ðu1;2 � u2;1Þ;2

� I11€u1 � I12ð€u1 � €u3;1Þ ¼ 0;

ð1 $ 2Þ; ð6aÞ

A12ðr2u1;1 þr2u2;2Þ þ A22ðr2u1;1 þr2u2;2 �r4u3Þ þ q� I11€u3 � I12ð€u1;1 þ €u2;2Þ
� I22ð€u1;1 þ €u2;2 �r2€u3Þ � ðP 11u3;1 þ P 12u3;2Þ;1 � ðP 12u3;1 þ P 22u3;2Þ;2 ¼ 0; ð6bÞ

A12ðu1;1 þ u2;2Þ;1 þ
1

2
B12ðu1;2 � u2;1Þ;2 þ A22ðu1;1 þ u2;2 �r2u3Þ;1 þ

1

2
B22ðu1;2 � u2;1Þ;2

� CFu1 � I12€u1 � I22ð€u1 � €u3;1Þ ¼ 0;

ð1 $ 2Þ; ð6cÞ
where
CF ¼
X3

n¼1

Z hn

hn�1

KG0
ðnÞ dx3; ð7Þ
in which K is the shear correction factor.
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CLPT:
A11ðu1;1 þ u2;2Þ;1 þ
1

2
B11ðu1;2 � u2;1Þ;2 � A12r2u3;1 � I11€u1 þ I12€u3;1 ¼ 0; ð1 $ 2Þ; ð8aÞ

A12ðr2u1;1 þr2u2;2Þ � A22r4u3 þ q� I11€u3 � I12ð€u1;1 þ €u2;2Þ þ I22r2€u3 � ðP 11u3;1 þ P 12u3;2Þ;1
� ðP 12u3;1 þ P 22u3;2Þ;2 ¼ 0. ð8bÞ
3. Exact solutions for FGMs sandwich plates

Rectangular plates are generally classified in accordance with the type support used. We are here con-
cerned with the exact solutions of Eqs. (5), (6) and (8) for simply supported FGM plate.

3.1. The free vibration problem of sandwich plates

The following representation for the displacement quantities of the shear deformation theories is appro-
priate in the case of the free vibration problem (P11 = P12 = P22 = q = 0):
u1

u2

u3

u1

u2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

U 1 cosðkxÞ sinðlyÞ
U 2 sinðkxÞ cosðlyÞ
U 3 sinðkxÞ sinðlyÞ
U1 cosðkxÞ sinðlyÞ
U2 sinðkxÞ cosðlyÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
eixt. ð9Þ
Here k = rp/a, l = sp/b, and U1, U2, U3, U1 and U2 being arbitrary parameters and x = xrs denotes the
eigenfrequency associated with (rth, sth) eigenmode. Eq. (9) is appropriate for CLPT by ignoring the func-
tions u1 and u2.

Eqs. (5), (6) and (8) in conjunction with Eq. (9) can be combined into a system of first-order equations as:
ð½L� � x2½R�ÞfDg ¼ f0g; ð10Þ
where the matrices {D} and [L] are given according to all theories in the first part of this paper (Zenkour,
2005a) while the elements of matrix [R] are defined in Appendix A. The condition expresses by
det([L] � x2[R]) = 0 yields the eigenfrequencies x.

For the sake of completeness and comparison, the analytical solution for the vibration problem of thin,
isotropic, rectangular plates is presented here as given in most literature (see, e.g., Leissa, 1973),
x ¼ p2

a2

ffiffiffiffiffiffi
D
qh

s
r2 þ a

b

� �2

s2
� �

; ð11Þ
where q is the material density, r and s are the mode numbers and
D ¼ Eh3

12ð1� m2Þ ð12Þ
is the flexural rigidity of the plate with E and m as Young�s modulus and Poisson�s ratio.
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3.2. The static buckling problem of sandwich plates

The representation in Eq. (9) specialized for x ! 0 is appropriate in dealing with the static compressive
buckling problem. The obtained equations allow one to derive some results which concern the buckling of
FG sandwich plates subjected to a system of uniform in-plane compressive loads P11 and P22 (P12 = 0).
Assuming that there is a given ratio between these forces such that P11 = �P and P22 = �cP; c = P22/
P11, we get
ð½L� � P ½H �ÞfDg ¼ f0g. ð13Þ

The elements of the matrix [H] are zeros except H33 = k2 + cl2. The condition expressed by
det([L] � P[H]) = 0 yields the buckling loads.
4. Numerical results

To verify the analytical formulation presented in the previous sections, six different types of FG plates
are considered. Sandwich plates that are symmetric and non-symmetric about their middle plane are exam-
ined. Note that the core of the plate is fully ceramic while the bottom and top surfaces of the plate are me-
tal-rich.

In the first part of this paper (Zenkour, 2005a), five types of FG sandwich plate are presented. Here an
additional case of (2-1-1) FGM sandwich plate is investigated. The top face thickness is the same as the core
thickness while the bottom face thickness is twice the core thickness. So in this case we have h1 = 0 and
h2 = h/4.

For the sake of clarity, Fig. 2 shows the through-the-thickness variation of the volume fraction function
of the ceramic for k = 0.02, 0.2, 1, 2, 5. Two different types, (2-1-2) and (2-1-1) FGM sandwich plates, are
considered.

The FG plate is taken to be made of aluminum and alumina with the following material properties:
Em ¼ 70E0; qm ¼ 2707q0 for aluminum;

Ec ¼ 380E0; qc ¼ 3800q0 for alumina;
where the reference values are taken as E0 = 1 GPa and q0 = 1 kg/m3.
For simplicity, Poisson�s ratio is chosen as mm = mc = m = 0.3 for both aluminum and alumina. We also

take the shear correction factor K = 5/6 in FSDPT.
Numerical results are presented in terms of natural vibration frequencies and critical buckling loads. The

various non-dimensional parameters used are:
thickness coordinate �x3:
x3
h
;

natural frequency �x:
xa2

h

ffiffiffiffiffi
q0

E0

r
;

critical buckling load P :
Pa2

100h3E0

.

Numerical results are tabulated in Tables 1–8 and plotted in Figs. 3–6. It is assumed (unless otherwise
stated) that a/h = 10 and a/b = 1. Tables 1–3 display the critical buckling loads and eigenfrequencies
obtained in the framework of various plate theories. The results obtained in Reddy (1984), as per the



Fig. 2. Variation of volume fraction function through plate thickness for various values of the power-law index k of symmetric and
non-symmetric sandwich plates. (a) The (2-1-2) FGM sandwich plate and (b) the (2-1-1) FGM sandwich plate.
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higher-order shear deformation theory (HSDT), and of the theory referred as DT developed in Librescu
et al. (1990) are used in the comparisons. An accurate three-dimensional elasticity solution by the differen-
tial quadrature method (DQM) of Malik and Bert (1998) for free vibrations of isotropic plates is also used
to assess the improvement in the prediction of frequencies.

First, Table 1 provides some sample results showing the accuracy of the present critical loads. The mate-
rial of the plate is considered as a fully transversely-isotropic with the following properties:
E ¼ 20.83� 106 psi ð145.81 GPaÞ; E0 ¼ 107 psi ð70 GPaÞ;

G0 ¼ 3.71� 106 psi ð25.97 GPaÞ; m ¼ m0 ¼ 0.44.
It is apparent that the critical buckling loads obtained by the TSDPT are the same as those of Reddy (1984)
using HSDT. This is not surprise because the two theories are the same. In addition, the results of FSDPT
are identical to those given in Librescu et al. (1990) using DT.



Table 1
Buckling loads P* = Pa2/(h3E) of a fully transversely-isotropic square plate (r = s = 1)

c Theory a/h

2 5 10 20 50

0.0 HSDT (Reddy, 1984) 0.9486 2.6386 3.5875 3.9442 4.0574
DT (Librescu et al., 1990) 0.9197 2.6325 3.5868 3.9442 4.0574
SSDPT 0.95624 2.64134 3.58825 3.94444 4.05743
TSDPT 0.94858 2.63860 3.58746 3.94423 4.05739
FSDPT 0.91971 2.63251 3.58676 3.94418 4.05739

0.5 HSDT (Reddy, 1984) 0.6324 1.7591 2.3916 2.6295 2.7049
DT (Librescu et al., 1990) 0.6131 1.7550 2.3912 2.6295 2.7049
SSDPT 0.63749 1.76090 2.39168 2.62962 2.70495
TSDPT 0.63239 1.75906 2.39164 2.62949 2.70493
FSDPT 0.61314 1.75501 2.39117 2.62945 2.70493

1.0 HSDT (Reddy, 1984) 0.4743 1.3193 1.7937 1.9721 2.0287
DT (Librescu et al., 1990) 0.4599 1.3163 1.7934 1.9721 2.0287
SSDPT 0.47812 1.32067 1.79413 1.97222 2.02871
TSDPT 0.47429 1.31930 1.79373 1.97212 2.02870
FSDPT 0.45985 1.31626 1.79338 1.97209 2.02870

CLPTjc=0 = 4.07970, CLPTjc=0.5 = 2.71980 and CLPTjc=1 = 2.03985.

Table 2
Fundamental frequencies x� ¼ ðxa2=2pÞ

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
of an isotropic rectangular plate (b = 2a, Analytical solution (Leissa, 1973) is

1.963495)

h/b CLPT FSDPT TSDPT SSDPT DQM solution (Malik and Bert, 1998)

0.2 1.81954 1.51101 1.51230 1.51294 1.53118
0.1 1.92433 1.80958 1.80974 1.80993 1.81513
0.02 1.96188 1.95639 1.95639 1.95640 1.95667
0.01 1.96309 1.96171 1.96171 1.96171 1.96179
0.005 1.96339 1.96305 1.96305 1.96305 1.96299

Table 3
Natural frequencies x� ¼ ðxa2=2pÞ

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
of an isotropic square plate

h/b r s CLPT FSDPT TSDPT TSDPT DQM solution (Malik and Bert, 1998)

0.2 1 1 3.04307 2.77612 2.77669 2.77717 2.78935
1 2 7.27816 6.04406 6.04919 6.05177 6.12471
2 2 11.18087 8.65997 8.67383 8.67960 8.87880
1 3 13.62572 10.155636 10.17716 10.18547 10.5036

0.1 1 1 3.11607 3.03428 3.03433 3.03445 3.03828
1 2 7.69731 7.23830 7.23897 7.23973 7.26053
2 2 12.17230 11.10448 11.10688 11.10867 11.1574
1 3 15.09930 13.52525 13.52929 13.53217 13.6058
2 3 19.40908 16.96226 16.96226 16.96698 17.0884
1 4 25.01214 21.20180 21.21607 21.22378 21.4318
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Table 4
Effects of volume fraction exponent on the fundamental frequencies of an FGM square plate

k Theory �x

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 1.87359 1.87359 1.87359 1.87359 1.87359 1.87359
FSDPT 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442
TSDPT 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445
SSDPT 1.82452 1.82452 1.82452 1.82452 1.82452 1.82452

0.5 CLPT 1.47157 1.51242 1.54264 1.54903 1.58374 1.60722
FSDPT 1.44168 1.48159 1.51035 1.51695 1.55001 1.57274
TSDPT 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451
SSDPT 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450

1 CLPT 1.26238 1.32023 1.37150 1.37521 1.43247 1.46497
FSDPT 1.24031 1.29729 1.34637 1.35072 1.40555 1.43722
TSDPT 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934
SSDPT 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931

5 CLPT 0.95844 0.99190 1.08797 1.05565 1.16195 1.18867
FSDPT 0.94256 0.97870 1.07156 1.04183 1.14467 1.17159
TSDPT 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397
SSDPT 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399

10 CLPT 0.94321 0.95244 1.05185 1.00524 1.11883 1.13614
FSDPT 0.92508 0.93962 1.03580 0.99256 1.10261 1.12067
TSDPT 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314
SSDPT 0.92875 0.94332 1.04558 0.99519 1.04154 1.13460

Table 5
Effects of volume fraction exponent on the uniaxial buckling load of an FGM square plate (c = 0)

k Theory P

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791
FSDPT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449
TSDPT 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495
SSDPT 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606

0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525
FSDPT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517
TSDPT 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681
SSDPT 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670

1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406
FSDPT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365
TSDPT 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656
SSDPT 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629

5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717
FSDPT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475
TSDPT 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469
SSDPT 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488

10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221
FSDPT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040
TSDPT 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991
SSDPT 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175
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Table 6
Effects of volume fraction exponent on the biaxial buckling load of an FGM square plate (c = 1)

k Theory P

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896
FSDPT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224
TSDPT 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248
SSDPT 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

0.5 CLPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762
FSDPT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758
TSDPT 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841
SSDPT 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835

1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203
FSDPT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182
TSDPT 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328
SSDPT 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314

5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859
FSDPT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737
TSDPT 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734
SSDPT 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744

10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111
FSDPT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020
TSDPT 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995
SSDPT 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087

Table 7
Natural frequencies �x of an FGM square plate (k = 2)

r s 1-2-1 2-2-1

CLPT FSDPT TSDPT SSDPT CLPT FSDPT TSDPT SSDPT

1 1 1.32200 1.30020 1.30246 1.30244 1.28650 1.26524 1.26775 1.26780
1 2 3.26976 3.14452 3.15698 3.15686 3.18172 3.05968 3.07353 3.07382
2 2 5.17700 4.88021 4.90879 4.90849 5.03724 4.74815 4.77998 4.78065
1 3 6.42690 5.98487 6.02667 6.02622 6.25311 5.82264 5.86924 5.87022
2 3 8.27066 7.57215 7.63674 7.63601 8.04649 7.36640 7.43850 7.44002
1 4 10.67355 9.57284 9.67233 9.67121 10.38339 9.31198 9.42315 9.42552
3 3 11.26475 10.05424 10.16314 10.16193 10.95830 9.78007 9.90179 9.90439
2 4 12.43611 10.99612 11.12461 11.12321 12.09731 10.69588 10.83951 10.84261
3 4 15.30248 13.23801 13.41936 13.41755 14.88418 12.87543 13.07809 13.08260
4 4 19.17579 16.13722 16.40035 16.39820 18.64932 15.69346 15.98701 15.99393
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Table 2 shows some sample results of the fundamental frequencies of isotropic rectangular plates for
decreasing values of the thickness ratio (h/b). The results of the present sinusoidal shear deformation theory
compared well with the DQM solution (Malik and Bert, 1998). As one would expect, it may be seen that
with plates becoming thinner, the fundamental frequencies in all cases approach to values of the analytical
thin plate solution (Leissa, 1973).

Next, we have displayed the natural frequencies of an isotropic square plate according to various
theories and DQM solution in Table 3. It may be seen that there is a close agreement between the present



Table 8
Effect of the aspect ratio on the critical buckling load P of an FGM rectangular plate (k = 2)

c b/a 1-2-1 2-2-1

CLPT FSDPT TSDPT SSDPT CLPT FSDPT TSDPT SSDPT

0.0 0.5a 14.69209 23.86154 23.94786 23.94721 12.01416 21.29983 21.38582 21.38784
1.0 5.96539 5.96539 5.98697 5.98680 5.50354 5.32496 5.32496 5.34696
2.0 2.41134 2.21831 2.23758 2.23745 2.14982 1.98352 2.00278 2.00325

0.5 0.5 12.86046 12.58665 12.61540 12.61518 11.46571 11.23031 11.25893 11.25960
1.0 4.11535 3.97692 3.99131 3.99120 3.66903 3.54997 3.56430 3.56464
2.0 2.14341 1.97183 1.98896 1.98885 1.91095 1.76313 1.78025 1.78067

1.0 0.5 7.71628 7.55199 7.56924 7.56911 6.87943 6.73819 6.75536 6.75576
1.0 3.08651 2.98269 2.99348 2.99340 2.75177 2.66248 2.67323 2.67348
2.0 1.92907 1.77464 1.79006 1.78996 1.71986 1.58681 1.60222 1.60260

a Critical buckling occurs at (2,1).

Fig. 3. Fundamental frequency ð�xÞ as a function of side-to-thickness ratio (b/h) of symmetric and non-symmetric FGM sandwich
plates using various plate theories (b = 2a, k = 2). (a) The (2-1-2) FGM sandwich plate and (b) the (2-1-1) FGM sandwich plate.
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Fig. 4. Buckling load ðPÞ as a function of side-to-thickness ratio (b/h) of symmetric and non-symmetric FGM sandwich plates using
various plate theories (b = 2a, k = 2). (a) The (2-1-2) FGM sandwich plate and (b) the (2-1-1) FGM sandwich plate.
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sinusoidal shear deformation solution and the DQM solution. In fact, the SSDPT gives buckling loads (see
Table 1) and vibration frequencies (see Tables 2 and 3) higher that other shear deformation theories. How-
ever, the SSDPT frequencies are slightly lower than the elasticity DQM solution values.

Tables 4–6 provide fundamental frequencies and critical buckling loads of six types of FG sandwich
plates using various plate theories and different values of the volume fraction exponent k. Of these results,
the frequencies and critical buckling loads decrease as k increases and as the core thickness, with respect
to the total thickness of the plate, decreases. An exception of this occurs when k P 5 in which the fre-
quencies of an (1-1-1) FG plate are more than the ones of an (2-1-1) FG plate. The (1-2-1) FG plate case
shows the highest sensitivity in the context of the considered FG sandwich plate types. In general, the
fully ceramic plates give the largest frequencies and critical buckling loads. The uniaxial buckling load
may be twice the biaxial one and this irrespective of the considered value of k and the type of the FG
plate.

Comparisons are given in Tables 7 and 8 on the basis of the symmetric (1-2-1) and non-symmetric (2-2-1)
types of FG sandwich plates. The frequencies increase as the mode number increases while the critical buck-
ling loads decrease with increasing aspect ratio (b/a) and c. In general, the vibration frequencies and the



Fig. 5. Fundamental frequency ð�xÞ as a function of side-to-thickness ratio (b/h) of symmetric and non-symmetric FGM sandwich
plates for various values of k. (a) The (2-1-2) FGM sandwich plate and (b) the (2-1-1) FGM sandwich plate.
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critical buckling loads obtained by the CLPT are much higher than those computed from the shear defor-
mation theories. This implies the well-known fact that the results estimated by the CLPT are grossly in
error for a thick plate and/or for higher mode numbers.

Figs. 3 and 4 exhibit plots of the fundamental frequencies and critical buckling loads versus the side-
to-thickness ratio for k = 2 and b = 2a. As expected, errors in the solutions obtained from the FSDPT
and the CLPT increase as the side-to-thickness ratio decreases. Among the four plate theories considered
here, the CLPT gives the highest frequency for the (2-1-2) FG sandwich plate while its behaviour is changed
from the highest to the lowest frequency when b/h ffi 11 for the (2-1-1) FG plate (see Fig. 3). Fig. 4 shows,
once again the well-known fact, that the critical buckling loads of the CLPT are independent of the b/h
ratio. The critical buckling loads decrease as c increases. The results of the non-symmetric plate are
higher than the corresponding ones for the symmetric plate and this depend on the thickness of the core
layer.

Figs. 5 and 6 depict the vibration frequencies and the critical buckling loads versus the side-to-thickness
ratio using TSDPT. The results are the maximum for the ceramic plates and the minimum for the



Fig. 6. Biaxial buckling load ðP Þ as a function of side-to-thickness ratio (b/h) of symmetric and non-symmetric FGM sandwich plates
for various values of k (c = 1). (a) The (2-1-2) FGM sandwich plate and (b) the (2-1-1) FGM sandwich plate.
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metal plates. It is seen that the results increase smoothly as the amount of ceramic in the sandwich plate
increases.

5. Concluding remarks

The critical buckling loads and the vibration frequencies of the sinusoidal plate theory, the third-
order plate theory, the first-order plate theory and the classical thin plate theory for functionally graded
plates have been established. The present sinusoidal theory contains the same dependent unknowns as
first- and third-order shear deformation theories, but accounts according to a cosine-law distribution of
the transverse shear strains through the thickness of the plate. Some available analogies between single-
layer homogeneous plates, symmetric and non-symmetric functionally graded sandwich plates are spe-
cial cases of the present results. As the ceramic constituent increases in the functionally graded sandwich
plate, i.e., the volume fraction exponent decreases, all of the critical buckling loads and the vibration
frequencies increase. In particular, the results of a homogeneous ceramic plate and a homogeneous me-
tal plate are, respectively, the upper and lower bounds of those of the functionally graded sandwich
plate.
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Appendix A

The elements of the symmetric matrix [R] are given according to the different theories by:

SSDPT and TSDPT:
R11 ¼ R22 ¼ �I11; R33 ¼ �I11 � I22ðk2 þ l2Þ; R44 ¼ R55 ¼ �I33; R13 ¼ kI12;

R23 ¼ lI12; R14 ¼ R25 ¼ �I13; R34 ¼ kI23; R35 ¼ lI23; R12 ¼ R15 ¼ R24 ¼ R45 ¼ 0.
FSDPT:
R11 ¼ R22 ¼ �I11; R33 ¼ �I11 � I22ðk2 þ l2Þ; R44 ¼ R55 ¼ �I22; R13 ¼ kI12;

R23 ¼ lI12; R14 ¼ R25 ¼ �I12; R34 ¼ kI22; R35 ¼ lI22; R12 ¼ R15 ¼ R24 ¼ R45 ¼ 0.
CLPT:
R11 ¼ R22 ¼ �I11; R12 ¼ 0; R13 ¼ kI12; R23 ¼ lI12; R33 ¼ �I11 � I22ðk2 þ l2Þ.
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